LP130100731: Mimicking natural ecosystems to improve green roof performance

Assoc. Prof. Nicholas Williams, Prof. Tim Fletcher, Assoc. Prof. Lu Aye, Dr Claire Farrell.

LP130100731 Aims:

1. Assess whether ecosystem mimicry can improve green roof stormwater retention and water quality.
3. Develop new green roof substrates to improve water and nutrient retention.
4. Validate experimental findings on a full-scale green roof.
5. Model green roof thermal and hydrology performance with different substrate and plant combinations under different rainfall and climate scenarios.

We have 4 months left on the grant.
Students

Zhanna Grebenshchykova, (Uni of Bordeaux internship) *The nutrient removal performance of vegetated roofs: quantification of an optimal fertilisation regime* (Experiment 2)

Andrew Pianella (PhD) - The thermal performance of green roofs in South-East Aust
Zheng Zhang (PhD) - Improving green roof hydrologic performance by increasing functional diversity
Joerg Werdin (PhD) - Can biochar improve green roof hydrological performance in hot and dry climates?

Influence of plant composition and water use strategies on green roof stormwater retention

- Evaluated how plant water use strategies influenced evapotranspiration (ET) and stormwater retention;
- ET and retention were greatest in plants with high water use and drought tolerance
- Plant roots reduced retention and soil water content due to preferential flow;
- Preferential flow overwhelmed the influence of water use strategies.
Summary

<table>
<thead>
<tr>
<th>Water use strategies</th>
<th>Conservative</th>
<th>Plastic</th>
<th>Plastic</th>
<th>Plastic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferential flow</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Water use</td>
<td>Low</td>
<td>High</td>
<td>High</td>
<td>Limited</td>
</tr>
<tr>
<td>Retention</td>
<td>Medium</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
</tbody>
</table>

Rainfall Retention

- Rainfall event size is the main driver of retention
- 100 mm deep green roof retained 84-95% annual stormwater because Melbourne has lots of small rainfall events
- Plant species:
 - have no influence on retention performance in small events
 - Influence retention via available storage before rainfall

\[
y = -0.07508 - 0.03757x + 0.01718x^2
\]

![Graph showing rainfall retention and plant species performance](image-url)
• Scoria substrate has the lowest thermal conductivity
• R-values of scoria and bottom ash higher than most green roof substrates studied overseas.
• Data used in green roof thermal models.

R-values of Green roof substrates - 10 cm deep, no plants

<table>
<thead>
<tr>
<th></th>
<th>SCORIA</th>
<th>BOTTOM-ASH</th>
<th>ROOFTILE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-values [Km²W⁻¹]</td>
<td>Dry</td>
<td>Moist</td>
<td>Wet</td>
</tr>
<tr>
<td></td>
<td>0.805</td>
<td>0.332</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>0.735</td>
<td>0.295</td>
<td>0.236</td>
</tr>
</tbody>
</table>

Steady-state

- Scoria substrate has the lowest thermal conductivity
- R-values of scoria and bottom ash higher than most green roof substrates studied overseas.
- Data used in green roof thermal models.

Effects of plant selection on substrate temperature

- Four monoculture modules
- Mixed and unvegetated modules
- Three replicates
- Rainfall is controlled
- Scoria substrate

Lomandra longifolia Dianella adixtia Stypandra glauca
Sedum pachyphyllum Mixture module Unvegetated module

Effects of plant selection on substrate temperature

<table>
<thead>
<tr>
<th>Plant Type</th>
<th>LAI</th>
<th>h (cm)</th>
<th>ρ_{vis} (%)</th>
<th>ρ_{IR} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lomandra longifolia</td>
<td>3.3 ± 1</td>
<td>$35-45$</td>
<td>26.5 ± 2</td>
<td>$23-54$</td>
</tr>
<tr>
<td>Stypandra Glauca</td>
<td>1 ± 0.1</td>
<td>$65-75$</td>
<td>7 ± 2.5</td>
<td>$26-39$</td>
</tr>
<tr>
<td>Sedum pachyphyllum</td>
<td>2.5</td>
<td>$15-18$</td>
<td>10 ± 2</td>
<td>$11-38$</td>
</tr>
<tr>
<td>Dianella adixtia</td>
<td>0.8 ± 0.1</td>
<td>$7-80$</td>
<td>9 ± 1</td>
<td>$27-46$</td>
</tr>
<tr>
<td>Unvegetated</td>
<td>6 ± 1</td>
<td>$10-18$</td>
<td>$26-39$</td>
<td>$23-54$</td>
</tr>
</tbody>
</table>

Mixture

- **LAI**: 1.3 ± 0.1
- **h**: $7-80$
- **ρ_{vis}**: 8.5 ± 2
- **ρ_{IR}**: $29-41$

Results: Bottom Temperature Swings

- Unvegetated modules have the greatest temperature variations;
- *Stypandra* has a performance similar to unvegetated modules due to scarce coverage.
- In this period, *Sedum* offers better insulation than *Lomandra* due to wetter substrate. However, annually *Lomandra* performs the best.
Temperature variation with green roof thickness

Control

Substrate thermal profiles across the three experimental green roofs does not vary significantly in the top 50-80 mm
Heat flux through the roof

Peak heat fluxes of 34, 17, 12 W m\(^{-2}\) for the 100, 150 and 200 mm thick green roofs respectively.

Time delay of 3.5, 5 and 7 hours for the 100, 150 and 200 mm thick green roofs respectively.

Potential Annual Building Energy Savings

Energy simulations for 1-storey brick commercial building with concrete roof and set indoor temperature (21 C heating, 24 C cooling).
Energy Conclusions

- David Sailor’s green roof model has been modified and updated to South-East Australia weather to provide more realistic simulations;
- R values of substrates are low. Scoria is the highest of those tested
- Selecting high albedo and cover plants will improve thermal performance
- Green roofs consistently reduce and delay peak heat fluxes into the building with increasing substrate thickness.
- Scoria substrate and Lomandra longifolia in a 150 mm green roof provide the best green roof thermal performance in Melbourne of the combinations we tested.
- Potential energy savings: 65% heating and 35% cooling.

Can biochar improve green roof hydrological performance?

Joerg’s PhD structure

Research question chapter 2:
Can wood anatomical structure be used as a predictor for the water holding properties of biochar?
Wood biochar and its water holding properties

Research question
Can wood anatomical structure be used as a predictor for the water holding properties of biochar?

Experiment
Wood anatomical structure in relation to biochar water holding properties.

Data
Wood density- and anatomical structure (Silviscan and water displacement) biochar water holding capacity (WHC), matric suction curve, plant available water (PAW), field capacity (FC), bulk density (BD)

Output
Paper / Geoderma or Science of the Total Environment

Species and results

<table>
<thead>
<tr>
<th>Species</th>
<th>Radial fibre lumen diameter (µm)</th>
<th>Wood density Silviscan (kg/m^3)</th>
<th>Wood density water displacement (Kg/m^3)</th>
<th>Dry bulk density biochar (kg/m^3)</th>
<th>Water holding capacity (% v/v)</th>
<th>Plant available water (% v/v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. cypellocarpa</td>
<td>11.6</td>
<td>629.9</td>
<td>671.6</td>
<td>156.1</td>
<td>44.2</td>
<td>40.9</td>
</tr>
<tr>
<td>E. delegatensis</td>
<td>11.3</td>
<td>526.1</td>
<td>593.1</td>
<td>157.7</td>
<td>43.6</td>
<td>37.3</td>
</tr>
<tr>
<td>E. divers</td>
<td>11.1</td>
<td>452.9</td>
<td>697.0</td>
<td>183.8</td>
<td>42.2</td>
<td>37.5</td>
</tr>
<tr>
<td>E. globaldia</td>
<td>10.8</td>
<td>654.9</td>
<td>786.0</td>
<td>190.7</td>
<td>41.1</td>
<td>36.6</td>
</tr>
<tr>
<td>E. leucodayx</td>
<td>10.6</td>
<td>726.6</td>
<td>777.5</td>
<td>210.4</td>
<td>40.4</td>
<td>36.1</td>
</tr>
<tr>
<td>E. macrophylica</td>
<td>10.7</td>
<td>815.6</td>
<td>868.9</td>
<td>179.2</td>
<td>42.3</td>
<td>37.7</td>
</tr>
<tr>
<td>E. melliodora</td>
<td>10.2</td>
<td>684.2</td>
<td>760.8</td>
<td>260.9</td>
<td>44.0</td>
<td>36.1</td>
</tr>
<tr>
<td>E. microcarpa</td>
<td>9.8</td>
<td>623.3</td>
<td>886.2</td>
<td>322.9</td>
<td>38.0</td>
<td>30.0</td>
</tr>
<tr>
<td>E. muelleriana</td>
<td>10.8</td>
<td>626.4</td>
<td>669.9</td>
<td>170.5</td>
<td>43.5</td>
<td>38.5</td>
</tr>
<tr>
<td>E. nilens</td>
<td>10.9</td>
<td>612.6</td>
<td>639.6</td>
<td>186.0</td>
<td>47.4</td>
<td>41.3</td>
</tr>
<tr>
<td>E. obliqua</td>
<td>11.2</td>
<td>617.0</td>
<td>676.9</td>
<td>158.6</td>
<td>40.8</td>
<td>35.1</td>
</tr>
<tr>
<td>E. pauciflora</td>
<td>10.5</td>
<td>521.2</td>
<td>578.7</td>
<td>140.3</td>
<td>44.5</td>
<td>41.6</td>
</tr>
<tr>
<td>E. polyanthemos</td>
<td>10.4</td>
<td>885.2</td>
<td>777.6</td>
<td>245.2</td>
<td>39.0</td>
<td>33.0</td>
</tr>
<tr>
<td>E. polypetrasia</td>
<td>9.9</td>
<td>681.9</td>
<td>920.1</td>
<td>204.3</td>
<td>35.5</td>
<td>39.1</td>
</tr>
<tr>
<td>E. radiata</td>
<td>10.8</td>
<td>926.7</td>
<td>663.7</td>
<td>195.6</td>
<td>47.8</td>
<td>42.3</td>
</tr>
<tr>
<td>E. regnans</td>
<td>11.4</td>
<td>553.8</td>
<td>592.2</td>
<td>158.7</td>
<td>41.6</td>
<td>36.9</td>
</tr>
<tr>
<td>E. tricarpa</td>
<td>9.8</td>
<td>852.4</td>
<td>625.0</td>
<td>304.8</td>
<td>36.9</td>
<td>26.4</td>
</tr>
<tr>
<td>E. viminalis</td>
<td>10.7</td>
<td>666.3</td>
<td>684.0</td>
<td>188.7</td>
<td>44.2</td>
<td>38.1</td>
</tr>
</tbody>
</table>

Table 1 Summary table of measurements taken for each of the different Eucalyptus species and their corresponding biochar type
Wood density is a good predictor for the amount of plant available water in biochar.

Wood biochar and its water holding properties

Academic Outputs

Plus three published conference proceedings
Recommendations for Industry

• Need to consider the effect of plant roots on water retention
• R values of substrates are small
 – No additional benefit deeper than 15 cm
• Energy savings
 – Up to 65% heating
 – Up to 35% for cooling
• The plants are very important: shade, albedo
• Biochar is a new useful substrate component